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Scope of Contract NAS2-4151

Work under Contract NAS2-4151 started on February 1,

1967. Phase I Report of September 1967 develops analytical

concepts for a random loads and vibrations analysis of lift-

ing rotors. Phase II Report of August 1968 presents a per-

turbation solution method for random blade flapping. Phase

III Report of June 1969 develops a more general method to

include high rotor advance ratios and makes use of a speci-

fic atmospheric turbulence model. Phase IV Report of June

1970 extends the method to the computation of threshold

crossing statistics for random blade flapping and introduces

non-uniformity of the vertical turbulence velocity in the

longitudinal direction. During FY 197'1 the work was extended

in three directions, resulting in 3 separate Phase V reports.

Phase V-A Report covers the inclusion of blade torsional

flexibility in the blade random gust response statistics.

Phase V-B Report covers the analysis of lifting rotor gust

alleviation methods and rotor dynamic stability. Phase V-C

Report describes the efforts to develop experimental methods

of substantiating the random loads and vibration analysis.

The work summarized in Phase V-A Report was performed under

Modification 5 to subject contract. The work summarized in

Phase V-B and Phase V-C Reports was performed under Modifica-

tion 6 to subject contract. A proposal has been submitted



for an extension of Contract NAS2-4151 through FY 1972 and

FY 1973. The scope of the proposed extension is to remove

some of the limitations of the present analytical model and

at the same time simplify the method of analysis, and to

conduct model tests to support the analysis.
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Abstract

The previously developed method of determining the flap-

ping gust response statistics of a rigid blade flexibly hinged

at the rotor center has been extended to include torsional

blade flexibility. Quasi-steady aerodynamics have been as-

sumed and a torsion mode where the amplitude is proportional

to the distance from the rotor center. Under the assumptions

made aerodynamic torsional moment inputs are limited to the

region of reverse flow where the aerodynamic center and the

section center of gravity are separated by half the blade

chord. Thus negligible effects of blade torsional flexibility

are obtained for rotor conditions with negligible reverse flow

effects. Numerical examples refer,to conditions with 1.6

rotor advance ratio. It was found that the random flapping

-i-
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response is only moderately affected by the torsional flexi-

bility, however large random torsional loads and deflections

occur even if flapping is completely suppressed. The coup-

ling of the actual flapping motion into the blade torsional

motion produces a substantial increase in the random tor-

sional loads or deflections.
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Notation

V

R

t, tl, t2

W, W
1 2X

L

sAx (W), SX.X. (X)
. ( 3

xj'x (w)
j k

i = V/QR

B

a = 2p/(L/R)

W

B

6

P = 1 + W2/a2

flight velocity

rotor radius

angular rotor speed

time variables

circular frequencies

scale of longitudinal turbulence

two-sided scalar power spectral den-
sities for random functions X(t),
xj(t), etc.

two-sided scalar cross-spectral den-
sity between random functions x.(t)
and xk(t)

rotor advance ratio

tip-loss factor

non-dimensional turbulence parameter

vertical turbulence velocity

non-dimensional vertical turbulence
velocity

blade flapping angle

torsional deflection of blade tip

elastic flapping restraint parameter

C(t)K(t),m
8

(t), m (t)
1 A

C 6 (t),K6(t),rk (t),r8 (t) periodic aerodynamic coefficients

Pr.(t)

blade Lock inertia number

blade torsional frequency

Y

fn
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II

If

c

F, Q

B, 6, X

B, 6

X(t)

A(t)

B(t)

F(t)

X T(t), AT(t)

0(t,T)

W(t ,T)

I
n

Y(w,t)

Y (' ,t)

y g(w,t)
Yjcs.(,t)

Yjas(w t)

flapping mass moment of inertia

feathering mass moment of inertia

blade chord

non-dimensional quantities characteriz-
ing respectively the aerodynamic damp-
ing of the blade torsional deflections
and the excitation of blade torsion by
the lift of the reverse flow region,
see Eq. (3-6)

rate of change of B, 6, X, etc.

rate of change of B, 6, etc.

state or output vector

state matrix

coupling matrix

stationary or non-stationary input
random vector

transpose of X(t), A(t), etc.

state transition matrix

weighting function or impulse response
matrix

n x n identity matrix

output vector for X = eita u(t), zero
initial conditions

complex conjugate of Y(w,t)

a typical element of Y(w,t)

real part of yjY(N,t)

imaginary part of yj,(w,t)

6( ... )

E ... ]

RXX(t1 ,t2 )

Dirac delta function

expected value

correlation matrix of X(t)
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RFF(tl,t2)

SFFI(Wl,u 2 )S 2(i

correlation matrix of F(t)

two-sided spectral density matrix
of non-stationary F(t)

SFF(W) two-sided spectral density matrix
of stationary.F(t)

RXx(t,t)

a (t) = VR (t)

rx x (t)
j k

Pxjxk(Xi xk't)

E[N+X (S,t)]
i

ECH (+ )I+x.
]

variance matrix of X(t) with typical
diagonal elements Rxxj (t) and Rx X (t)

standard deviation of x.(t)

cross correlation coefficient between
components xj and Xk, see Eq. (2-23)

time variable joint probability
density function between components
x. and xk.

threshold for response components

time variable expected number of
positive crossings per unit time of
threshold i for response component x.

expected number per rotor revolution
of positive crossings of level i
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1. Introduction

While all preceding work under subject contract presented

in Phase I to IV reports and published in References (1) to

(3) was limited to the analysis of the response variance and

response level crossing statistics of a rigid flapping blade,

the present report deals with the extension of this analysis

to multidegrees of freedom systems, in particular to the in-

clusion of the torsional blade flexibility which in the high

advance ratio regime with large regions of reverse flow has

a significant effect on blade vibrations.

The general response correlation theory is formulated

via the frequency response method using the state variable

approach which is convenient to treat multidimensional sys-

tems with feedback systems and with several input components.

However the algorithm for the digital computer program makes

use of the fact that the same random excitation occurs at

all inputs. Although some of the general derivations have

already been published in Reference (3), they are included

herein for the sake of completeness.

The numerical results for the example include both in

blade torsion and in blade flapping, the mean square response

values and the expected values of the rate of up-crossings

for nine response levels of the combined random flapping and

random blade torsion model. In order to study the coupling

effects between blade flapping and blade torsion on the blade



-2-

response characteristics, these numerical results are also

compared with the corresponding results from a one degree of

freedom model in which only flapping or only torsional de-

flections are permitted.

According to the finding in the phase IV report, the

effects of longitudinally non-uniform turbulence over the

rotor plane are neglected and consequently the inflow exci-

tation at the rotor center is taken as the representative

of the vertical turbulence velocity distribution over the

entire rotor disk. However, the assumption that the self-

induced turbulence in the rotor plane can be neglected as

compared to the turbulence of the free atmosphere is re-

tained, and for computational purposes the Taylor-von Karman

turbulence spectrum has been approximated by an exponential

low-pass type spectral density function. Though somewhat

inaccurate, the assumption of quasi-static aerodynamics has

.been retained also for the coupled .flapping-torsion problem.

The errors from not using unsteady aerodynamics are probably

comparable to those from using a simplified analytical rotor

model with blades rigid in flap-bending and in chordwise

bending. The results cannot be expected to be quantitatively

correct, but they should provide the proper trends and valua-

ble insights' into the mechanism of the random gust response.
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2. Response Covariance Matrix and Threshold Crossing Statistics

As indicated in Phase IV Report the state variable ap-

proach for multidimensional systems provides a computationally

convenient and mathematically compact representation of the

system dynamics. Therefore, preparatory to the description

of the blade response covariance matrix via the method of

harmonic inputs, we first introduce a state vector X(t). The

number of components, or the dimension of X(t) would depend

upon the number of degrees of freedom and the type of feedback

systems. However, we stipulate that the state vector is of

dimension n x 1 and that it is also identical to the response

vector. Now, the linearized equations of motion of a lifting

rotor system with finitely many degrees of freedom can be ex-

pressed in the state vector form

X = A(t)X + B(t)F, X(O) = 0, 0 < t < T 2-1

or in index notation

xj = aj (t)xk + b (t)f j,k = 1,2,...n and
) jk k j'

Z = 1,2,...m and n > m.

A(t) -is the state or essential matrix which depends on the

system damping and spring parameters, while the coupling matrix

B(t) with elements representing the input modulating functions

relates the input vector F(t) with the rate of state vector X(t).

Referring again to equation (2-1), we now define the state

transition matriK by



-4-

dt (t,e) = A(t) 0(t,0) 2-2a
dt

with the initial conditions

'(e,e) = I 2-2bn

where I is a n x n identity matrix.
n

A typical jth column of the state transition matrix,

[.ij], i - 1,2,...n, is the solution of the homogeneous equa-

tion (2-1) with F(t) = 0 and for the initial condition at

t=e

x1

x 0

X(t) f | (t,e) B(G)F(o)dE (2-3)

j J

The state vector being identical to the output, the weighting

function or the impulse response matrix can be expressed as

W(t,e) = O(t,e) B(o) t > o
(2-4)

W(t,e) = o t < O
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Therefore, according to equation (2-4) the state vector now

reduces to

X(t) = f w(t,8) F(e)de 2-5

When the input vector has zero mean values, from the linearity

of the system, the output vector will also have zero mean

values. Therefore the input and output covariance matrices

are equal to their respective correlation matrices defined by

RFF(tlt2 ) = E[F(tl) F (t2 )] 2-6

and

XXtlt2) = ECX(tl) XT(t2) ] 2-7

Inserting equation (2-5) into (2-7) one obtains with equation

(2-6) the response covariance matrix

{ 1 0
t

2
R 1

XX(t 2) j W(l J) 1 RFF(O 1 ,e)WT ( 2,e 2)d 2 2-8

The weighting function matrix is of dimension n x m while

RFF(81,02 ) is the m x m covariance matrix of the input pro-

cess. According to the generalized Wiener-Khinchine relation

this input covariance matrix can be considered as the double,

Fourier transform of the spectral density matrix SFF(Wl,w 2).

With RFF(O1,02 ) expressed in terms of spectral density, Eq.

(2-8) takes the form
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For stationary input processes

SFF(wlw2. ) = Imn( 2-w1)

therefore Eq. (2-13) simplifies to

RXX(tl't2) = Y*(w,tl) SFF(w) YT(w,t)dw
!.

(2-14)

(2-15)

or in index notation

R x (t,t2) = E E yj(,t)s (w t2 )dw
I XP - (=l k=l I )Ykp(mt2)dwJp~I

j ,p = 1,2,... ,n. (2-16)

By setting tl=t2=t in the above equation one gets the elements

of the state variance matrix which in real arithmetic simplify

to

Rxxj (tt) i= ~2 yc(w,t) + y s8 (w,t)]f f (w)dw

m m

rn+ 2 yjtc(wt) Yjkc(w t) + Yj(wt)Yjks(t

£4k 

j = 1,2,...,n (2-17)l (k )d
sff k

and

Rxjp (t,t) = _i [yjc(,'t)ypzc( ' t ) + Yjts(w,t)y ps(w.,t)]

m m
Sf (w)dw + E f 'Yjic'(wt)Ypkc( t) + y 8(w,t)
sff I =1 k=l

Ypks(wt)J sf f· (w)dw J,p 1,2,...,n (2-18)
Ypks

(~ ' t
)
szk
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R x(tt 2) = iW(tl,B )dO1 ft[ i SFF(Wl,W2 )e-i(w11- w2e2)

dwldw2 ] wT(t2 ,e 2 )de2 (2-9)

where i = /-T.

When the order of integration in the above equation can

be interchanged the scalar harmonic functions e iWlol and

ei w 2 6 2 can be considered in combination with the respective

weighting function matrices W(tl,81 ) and wT(t2,e2 ), and the

state covariance matrix can be expressed as

RXX(tl t 22 = W(tl ,l)ae 1 de] SFF(W l,2

[ft 2 WT(t2, 2 )eiw 2

e

2 de2 ]dw d
2

(2-10)

Observe that the superposition integral shown in brackets are

system responses to harmonic excitations; that is, the fre-

quency response matrix

.t

Y(m,t) = W(t,e)eie de (2-11)

satisfies the state equation

Yi(,t) = A(t) Y(w,t) + B(t)eiwt (2-12)

Substitution,of Eq. (2-11) into (2-10) yields

Rxx(tl,t 2) 2 i If Y(wl,tl) SFF()lw2 ) YT(w2,t2)dwldw2 (2-13)
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where

yij(w,t) = YjQc("t) + iYits(W,t), i = 

From the linearity of the system, yjzc(w,t) and yjzs(wt) are

also the deterministic system responses when the corresponding

random input components are replaced respectively by cos wt and

sin wt. Computationally this means, Eq. (2-12) has to be inte-

grated 2m times to generate the n x m frequency response ma-

trix, Y(w,t) in real arithmetic. As mentioned earlier, a case

of special interest in our lifting rotor study is when f 1 =f 2 =

= f=A,. such that the input spectral density matrix SFF(w)m Fr

in Eq. (2-15) is replaced by the scalar spectral density func-

tion sAA(w). Observe that this is only a special case of Eq.

(2-12) in.which the coupling matrix B(t) and the frequency

response matrix Y(w,t) reduce to n x 1 column vectors. With

Z=k=l in Eqs. (2-17) and (2-18) we have

R (tt) 2 [yc(wst) + yj (w,t) aXX()dw

- = 1,2,...,n (2-19)

and

Rxjxp(t't) 2 CYjc(w,t) Ypc(w,t) + Yj,(w,t) Yp (w,t)]
0

sxX(w)d Jp = 1,2,...,n (2-20)

where, for a preset discrete value of w, deterministic response

yjc(w,t) and yjs(w,t) are generated by solving Eq. (2-12) only

twice.

I
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In reliability and cumulative damage studies it is of impor-

tance to know, in addition to the mean square response levels,

the variation of random response oscillations with respect to

several preset thresholds or response levels. Such threshold

crossing statistics or the expected value of the rate of up-

crossings of thresholds are required in the design of fatigue

tests and to estimate fatigue allowables etc. Under certain

conditions it is also possible to estimate the distribution

of response peaks and the total expected damage within a

given time interval; for details see Powell's formula on the

distribution of high level peaks in reference (6) and Roberts'

analysis (7) on cumulative damage due to non-stationary ran-

dom loading.

Let xj and xk be two typical components of the response

vector X(t) in equation (2-1) such that xj xk. Then, the

expected value of the number of positive or up-crossings of

response level e per unit time is given by the Rice Equation

(8)

E[N+xj (&,t)] = jpx (tlxk 9t)dxk (2-21)

When the input vector F(t) in Eq. (2-1) is jointly Gaussian,

from the linearity of the system, the output vector is also

jointly Gaussian and the joint probability density function

PxjXk(xjxkt) between xj and xk is given by (reference 8)
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P X(xi 9Xt) -(1 a a ) r ) exp [-{a2xk

2 a xj + a x22 2 2 /1-rjx}
.Xj XkXXjXkXk XkXj] 2 Xk xjxk

.... (2-22)

Inserting equation (2-22) with xj = [ into equation (2-21) and

performing the integration over dxk one obtains (Reference 8)

EN +xj(,:t)] -' [. 4- x'x k x3 xxj/(
i i

1
+ 2/2 '

/ax\ r a~~~( 2
j-axp ( t- I

[°Xk• ox x \

~o j/ ( I k)lx((.xj) I

1 + erf rx la /2(1-rx2 ) ii (2-23)

where

2
ax = E[xjxj]

xk

[x = X k]

xjx
k

a
xj axk

and

erf(e) a 2
AT

-t 2 dJe dt.
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3. Deterministic Response

The analytical model used for this study is described

in the following. A centrally arranged flapping hinge with

an elasticflapping restraint and linearized quasi-steady

aerodynamics with reverse flow effects are stipulated. The

dynamic equations of motion of such'a flapping blade includ-

ing the study of stability boundaries are given by Sissingh

in Reference (4). In the present report we relax the assump-

tion that the blade is rigid in torsion by considering the

problem of combined random flapping and random blade torsion.

Therefore, we briefly describe below the dynamic equations

of the blade model, following the analysis of Sissingh and

Kuczynski (5).

Under the stipulations stated earlier and further as-

suming a linear approximation for'the normalized torsional

mode shape the dynamic equations of blade flapping and blade'

torsion read (5)

22P 2

2¥ + C(t)b+ [" + K(t)]B - m (t)6 = mt (3-1)

f2
y2 + QKa(t)36 + Qt.(t)B + Qt (t)B3y FC6(t)6 Ey[ r qr¢(t)) Brr

=-Qt (t)X (3-2)

The time unit t is selected in such a way that the rotor angu-

lar velocity is one and the period of one rotor revolution is

2w. At an advance ratio greater than the tip-loss factor the

time variable system parameters C(t), K(t) etc. in Eq. (3-1)
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and (3-2) are non-analytic due to reverse flow. Therefore

these system parameters are approximated by truncated

Fourier series valid over the entire rotor disk. Assuming

an advance ratio of 1.6 and a tip-loss factor of 0.97 we

present in Figures la and lb the system parameters m
e

(t),
1

C6 (t), K6 (t), Z (t), 9r (t) and 9r (t). For system para-
' a rr r' r8

meters C(t), K(t) and mA(t) which pertain to the pure flap-

ping equation see Reference (2), pages 420 and 421. p in

Eq. (3-1) represents the elastic flapping restraint parame-

ter which is equal to one for zero flapping h-inge offset

and zero flapping restraint, while a hingeless rotor can

be simualted with p > 1. For rotors with an elastic root

restraint, p increases with decreasing rotor speed:

p2 _ 1 + (1) (3-3)

The inflow ratio A in Eq. (3-1) represents the vertical com-

ponent of the turbulence with zero mean value and with the

low-pass type exponential spectral density function. mA(t)

and LrA(t) are called the input modulating functions.

For the sake of brevity we now introduce the notation

(t) 2 DB
1
(t), Yt 2 + K(t)] SBl(t)

Y m (t) - S6
1
(t), 2. m,(t) = Ai(t) (3-4)

2
3y FC(t)= D62(t), 3[3y + QK

6
(t)] S6

2
(t)

3y Zr B(t) = S= 2 (t), 3yQtr4(t) = DB 2 (t) and -3yQ'rX(t) = A6 (t)
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With the selected state vector

B = Y', Y2 = y' 3
= 6 and y4 2 6 (3-5)

the blade flapping and torsion equations (3-1) and (3-2) now

take the form

yl 0 1 0 0 y1 0

|Y2 -SB1 (t) -DBl(t) S6
1
(t) 0 Y2 AB (t)

0 0 0 1 Y

-SB 2 (t) -DB
2
(t) -S&

2
(t) -D62 (t) Y.4 A6(t)

(3-6)

As the state vector is identical to the response vector,

yjc(w,t) and yjs(w,t) in Eqs. (2-19) and (2-20) could be

obtained by solving the matrix Eq. (3-6) with A = cos wt

and with A = sin wt respectively.

In Figure 2, solid lines represent two typical response

histories of ylc(O,t) and Y3c(O,t) or according to Eq. (3-5)

the flapping and torsional deflections to modulated step in-

puts. The dotted lines in the same figure refer to the un-

coupled system obtained by setting S61 (t), SB2(t) and DB2 (t)

to zero in Eq. (3-6). The assumed set of system parameter

constants which will be retained in subsequent numerical

studies are given below

= 1.6, B = 0.97, y = 4, p = 1.3, f = 8, F =. 0.24 and Q = 15.

SiceF=I R l n Q~RI
Il()2 f1 c 1 c 11

Since F f and Q I-f
I R If L 
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if the lift slope for normal and reversed flow is assumed

to be the same, the selected parameter values for F and Q

correspond to a radius over chord ratio of (R/c) = 15.6

and to a ratio of flapping moment of inertia over feather-

ing moment of inertia of (Il/If) = 940. For these constants,

according to the stability analysis of Sissingh and Kuczynski

(5) the system is well within the stability region; see also

Figure 8 of Reference (5). As expected yB(O,t) values of

the uncoupled system agree with the corresponding flapping

response histories shown in Figure 5 of Reference (2).

The computer solutions were obtained by a Runge-Kutta

library'Aubroutine with three timewise step-sizes: At = 0.2,

0.1 and 0.05. The numerical results with At = 0.1 and 0.05

were in good agreement, while the step-size of 0.2 was found

to be unsatisfactory. Therefore this timewise step-size of

0.1 is maintained for all the numerical work presented in

this phase V-A report. From Figure 2 it is evident that

the coupling of torsional blade flexibility with blade flap-

ping amplifies pure torsional step input amplitude by about

61%, while the coupled flapping response is affected only to

a minor degree. This maximum amplification of torsional de-

flections occurs close to the central portion of the reversed

flow region which for our blade model, during the second rotor

revolution, lies within the azimuth range 3.2w < t < 3.8w.

The steady state is reached almost after the first rotor
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revolution and the average flapping amplitude value of the

coupled system agrees well with that given by Sissingh and

Kuczynski (5).

4. Random Response

The computer results pertain to the combined random

flapping and random torsion model for which the modulated

step input response.history is shown in Figure 2. The as-

sumed spectral density function of the vertical inflow,

which is the only type of input treated here, is given by

s (W) = for w < 3
r(a +W2 )

s (W) = 0 for Jwi - 3

For.the assumed value of turbulence scale over rotor radius

of (L/R) =-12 one obtains (Reference 2)

a =-2p/(L/R) = .266

The response statistical description includes root mean

square values of the torsional and flapping deflections and

the expected values of the rate of up-crossings for several

response levels. Only the second rotor revolution is shown

where the response variance matrix has become approximately

periodic with period 2w. Further, in the comparison of res-

ponse description between the coupled and uncoupled.systems,

full lines refer to the flapping blade with torsional



flexibility, while the dotted lines to the uncoupled system

in which only flapping or torsional deflections are permitted.

This latter case is obtained by setting the coupling parame-

ters S6
1
, SB2 and DB2 to zero in Eq. (3-1) and (3-2). The

mean values of response up-crossings are obtained from Eq.

(2-23) in which the response variance values of B, a, 6 and

6 are computed from Eq. (2-19) and the cross-covariance

functions RB8 (t,t) and R
6
4(t,t) from equation (2-20). A

step-size of 0.1 was selected both with respect to time and

frequency, and the required computer time on IBM 360/50

machine is about 12 minutes to cover 9 response levels.

In Figures 3 and 4, the root mean square values of the

flapping and torsional deflections are given. It is instruc-

tive to note that the coupling between blade flapping and

blade torsional flexibility influences aB(t) values only to

minor degree, where as its effect on o6 (t) is significant;

the increase in the peak value of a
6
(t) is of the order of

33%,-when t - 3.4w. As expected this location of the peak

value is close to the central portion of the reverse flow

region which for our blade model lies within the azimuth

range of 3.2n to 3.8w.

At this stage, it is worth comparing between aB(t) and

ly(0O,t)l, and between a
6
(t) and ly 6 (0,t)l. As noted on

page 423 of Reference 2, the absolute values of system res-

ponse components to modulated step inputs shown in Figures

5a and 5b, could be respectively treated as the root mean

-16-
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square response values for the limiting case of L/R = m,

which is simple to interpret and economical to compute.

From the study of Figures 3 and 5a, it is seen that 1Y,(O,t)I

is a fairly satisfactory engineering approximation to oa(t),

the error with respect to the maximum value is roughly 16.5%

even with the inclusion of torsional flexibility. Interest-

ingly enough, the order of percentage error between a8 (t)

and jy0 (O,t) I is more or less the same both for the coupled

and uncoupled systems, see also Figure 6 of Reference (2).

However, from Figures 4 and 5b, what is significant is not so

much the 28.5% error with respect to the peak values of aB(t)

and ly6 (O,t)I of the coupled system, but it is the significant

discrepancy in the pattern of variation. For the correspond-

ing uncoupled system, see Figures 2 and 4, a0(t) and IY6(O,t) I

values agree well with respect to the maximum peak values,

even though the pattern of variation differs significantly.

Thus, from the view point of establishing certain design

parameters of gust alleviating feedback systems etc., it ap-

pears that the limiting case of L/R = - is satisfactory to

approximate the flapping response variance values, at least

for high altitude flight conditions where the turbulence

scale length is much larger than the rotor radius. However,

a similar approximation for torsional deflections could in-

troduce large errors.

Figures 6 and 7 show the expected value of the rate of

up-crossings for response levels zero and one. Figure 6a
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in particular shows that the inclusion of the torsional

flexibility has the effect of reducing sharp peaks in eNB(O,t)]

most of which for the uncoupled system occur within a narrow

range of the azimuth angle. In other words, for a given

value of L/R the sample functions of random flapping of a

blade with torsional flexibility would deviate more from.

the response histories to modulated step inputs than the

response sample functions of a pure rigid blade flapping.

Both Figures 6a and 6b indicate that for e = 0 and g =.1,

the expected number of positive flapping crossings per rotor

revolution or EEM+B([)], is more or less the same for both

coupled and uncoupled systems.

In Figures 7a nad 7b, as in Figure 6, the mean values of

the rate of up-crossings of random torsional deflections are

shown for threshold levels of zero and one. It is seen that

the average value of the total number of zero crossings per,

revolution or E[M+6 (0)], is higher for the uncoupled system;

But, at i = 1, the coupled system will have a higher value

of E[M+ (1)] than the uncoupled one. It is also interesting

to note that for both the coupled and uncoupled systems

E[N+6(0,t)] and EEN+
6
(l,t)] have sharp peaks at locations

at which y 6 (O,t) crosses the response levels of zero and

one with positive slope.

At this. stage we revert back to certain observations on

page 423 of Reference (2). It was stated that positive and

negative turbulence velocities occur on the average with

equal frequency so.that during some rotor revolutions the
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response for L/R = = will look like a curve in Figure 2 a;

for an equal number of revolutions the response will be

given by the mirror image of this curve. For finite values

of L/.R, zero crossings can occur at any time, with the most

likely occurrence close to those for L/R = -. To gain fur-

ther insight into the variation of response sample functions

two response levels equidistant from the mean zero level are

selected, the particular values of e in Figures 8a and 8b

being t1.75. Observe that for both coupled and uncoupled

systems the peak value of E[N B(1.75,t)]occurs when t - 8.75.

Similarly for the uncoupled system the major peak value of

E+N (-1.75,t) is in the neighborhood of t = 10.7. However,

for the coupled system most of the up-crossings with respect

to the response level of -1.75 occur when t varies from 10.6

to 11.6. It is instructive to study Figures 8a and 9b in

conjunction with Figure 2a. It is evident that for both the

coupled and uncoupled systems yB(O,t) values up-cross the

response level of 1.75 when t : 8.75. The mirror image of

this response history also up-crosses [ = -1.75 at t - 10.7

for the uncoupled system, and for the coupled system response

y8 (O,t) with positive slope is almost at the level of -1.75

when t varies from 3.5v to 3.6w.

'Figures 9a and 9b once again refer to the level crossing

statistics,-[+N (±l.75,t)].The mirror image concept mentioned

earlier is approximately true for torsional oscillations, even

though one has now to consider up-crossings at close azimuth

locations.
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In Figure 10 the study of flapping response up-crossing

statistics is further pursued by selecting higher response

levels. A significant observation is the negligible differ-

ence between coupled and uncoupled systems in E[N +B(,t)]

values for X > 2. Observe also that yB(O,t) values of cou-

pled and uncoupled systems are almost identical for response

levels higher than 2, see Figure 2a. However, Figure 10

clearly indicates that random flapping response peaks, both

for the coupled and uncoupled systems, reach much higher

thresholds than what is shown by y (O,t) in Figure 2a. Ob-

serve that in Figure 10 with t varying from 9 to 10, a few

response peaks indicate the possibility of up-crossing a

threshold level of 6, which is about 2.15 times higher than

the maximum positive flapping amplitude of y,(O,t).

In order to relate the non-dimensional response levels

used here to dimensional quantities it should be noted that

according to Reference (2) a standard deviation of vertical

gust velocity of 8 ft/s occurs at low altitude with about

.1% probability. For 300 ft/s blade tip speed and 280 knots,

giving u = 1.6, this results in aX = 1.50. The levels of 8

and 6 indicated in the figures are then to be multiplied by

1.5 and interpreted as degrees. It is seen that a C-level

of 6 corresponds to a blade tip torsional deflection of 9° ,

and very high random torsional deflections and loads will

occur in turbulence even with a blade of high stiffness

as indicated by the assumed torsional frequency f = 8 per rev.
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In Figures 11 and 12, the threshold crossing statistics

of torsional deflections are shown for e varying from 2 to 6.

As observed earlier, sharp peaks in E[N+6(E,t)] values occur

at locations at which y6 (O,t) values crosses the corre-

sponding threshold levels with positive slope. It is also

seen that E[M+6 ()] values are increased due to coupling

with blade flapping, a fact also evident from Figure 2b.

5. Concluding Remarks

The previous studies summarized in Reference (2) have

shown that high random flapping vibrations and loads must

be expected when flying an unloaded rotor at high advance

ratio in turbulent air. These flapping random vibrations

can be quite effectively alleviated by various feedback

systems as was shown in Reference (9). The present study

of coupled torsion and flapping random blade vibrations has

shown that the problem of random torsional motions and loads

at high advance ratio is even more severe than the flapping

problem. Even in conditions substantially below the dyna-

mic stability limit, turbulence excited random torsional

vibrations are very high. Since the mechanism of these high

excitations involves the loss of torsional stiffness through

aerodynamic negative spring effects it is difficult to visua-

lize a feedback system which could alleviate the torsional

random vibrations and loads. It was found that the aerodyna-

mic coupling between flapping and torsion considerably
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aggravates the torsion loads, though only a small effect

of this coupling on the flapping loads was established. A

more detailed study of the causes of the detrimental coup-

ling may produce some insight into possibilities of de-

vising a type of beneficial coupling which would alleviate

the torsional vibrations without substantially increasing

the flapping vibrations. The obvious next step is to study

the effects of positive and negative 63 coupling on the tor-

sional.random vibrations.
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